

Intro to automated text analysis

6 June 2019

Matt W. Loftis

Goals for today

- Important things computerized text analysis can and cannot do
- 2. Develop vocabulary for talking about text analysis
- 3. How to select appropriate text analysis tools
- 4. Tools for your own basic analyses

Program

- ► Key definitions
- ► Types of text analyses:
 - ► Simpler:
 - Simple scales (dictionaries/word counts)
 - Supervised classification
 - ► More advanced:
 - ► Topic modeling
 - ► Multidimensional scaling
- Conclusion

Key definitions

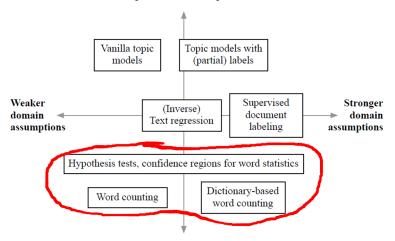
- ► **Algorithm**: Set of instructions, like a recipe. Also a type of model.
- ▶ Document: A unit of observation. A speech. A book. A tweet. A law.
- ► **Corpus**: All of your documents.
- ► **Feature**: Things appearing in documents. Words, phrases, emojis, etc.
- ▶ Dictionary: List of words/phrases pertaining to a concept. (e.g. happiness, certainty, etc.)

Basic steps

- 1. Get some text in electronic format
- 2. Clean the text
- 3. Run the analysis
- 4. Interpret results
- 5. Make the right graph, table, etc.

Methods (see, O'Conner et al. 2011)

Complex statistics/computation



Simple scales

Weaker assumptions:

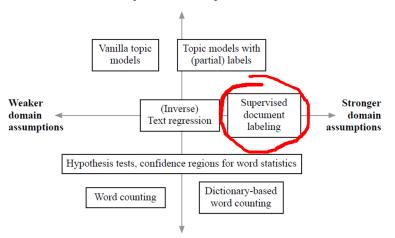
- Word or phrase counts or relative frequencies
- Example: see here

Stronger assumptions:

- ► Counts or relative frequencies of concepts or ideas
- ► Example: see here
- Example: and here

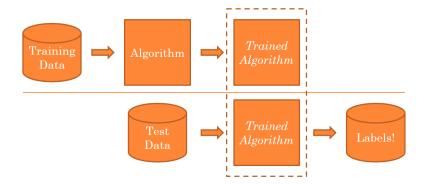
Methods

Complex statistics/computation



Classification basics

Goal: Use a set of documents with labels to 'teach' the computer to classify new documents.

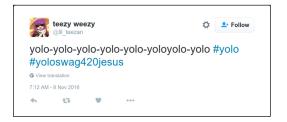


Classification basics

- ► Training data = documents with labels
- ► Test data = documents without labels
- ► Many different methods exist:
 - ► Support vector machines
 - ► Naïve Bayes
 - Neural networks
 - ► Maximum entropy
 - Decision trees
 - Etc.

Just use the one that works best!

Twitter example



#yolo

#subtweet

Classification example

- ► Training data = #yolo and #subtweet (450 each)
- ► Test data = 10% subsample
- ► Method = Naïve Bayes
- ► Confusion matrix for 10% subsample test

		Predicted		
		#subtweet	#yolo	Total
Actual	#subtweet	38	5	43
	#yolo	17	30	47

Classification example

		Predicted		
		#subtweet	#yolo	Total
Actual	#subtweet	38	5	43
	#yolo	17	30	47

► Precision = % correct out of predictions

► #subtweet: 0.69

▶ #yolo: 0.86

► Recall = % correct out of true

► #subtweet: 0.88

▶ #yolo: 0.64

Interpreting results

- ► **High precision** means the classifier can tell the difference between classes relatively well
- ► **High recall** means the classifier can catch most or all instances of a class
- ► Compare against chance!
- ► For example, with two classes, the probability of guessing correctly is 50%. So, if overall accuracy is around 50% your model isn't working...

Do-it-yourself classification

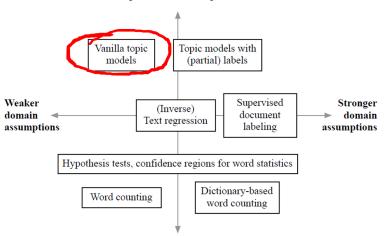
- "Easy" software: http://mallet.cs.umass.edu/index.php
- ► MALLET: (MAchine Learning for LanguagE Toolkit)
- ► Command-line interface
- ► Windows, Mac, or Linux
- ► Fast and relatively very easy
- ► Why is this useful????

Do-it-yourself classification

- ► See MALLET examples here:
 - https://www.youtube.com/watch?v=zVzUotS9GpQ
 - https://www.youtube.com/watch?v=eBJF5heX5yc

Methods

Complex statistics/computation



Topic modeling

Extracts themes (topics) from documents:

- ► Give computer documents and number of 'topics'
- ► Computer returns two things:
 - ► Features associated with topics
 - Association of documents to topics
- ► More advanced methods account for other info

Example uses

- ► See here
- ▶ Quick glance at content of lots of documents
- ► Quantitative measure of document content!

Multidimensional scaling

Place documents on a continuum (scale):

- ► Computer extracts most important dimension(s) from text
- Returns a number associated with each document (or writer/speaker, etc.)

Example uses

- ► Place legislators on left-right line from speeches in parliament
- ► Place interest groups on a for-against dimension based on their public statements on a policy

Quick note on software

- ► Text processing, counts, and relative frequencies:
 - R, Python, Perl, Ruby, etc.
- ► Classification, topic models, scaling, etc.
 - ► R, Python, Ruby, etc.
 - ► MALLET
- ► Practical advice:
 - ► MALLET is easy if you might do this often-ish
 - ► R or Python are harder, but worth it if this is part of your work
 - ▶ Otherwise, get someone trained to do this! But:
 - Know what you want
 - ► Use the right vocabulary

General points

- ► Broader fields are:
 - ► Natural language processing (NLP)
 - Computer science / data science / computational linguistics
- ► Automated text analysis is growing fast
- ▶ Basically all computer (data) scientists learn these tools
- ► Used effectively, they make life much easier

Hands-on with MALLET

- 1. Supervised classification
- 2. Topic modeling

Supervised classification hands-on

- 1. Unzip "tweet_data" and "tweet_test" into MALLET folder
- 2. Build data:

```
bin\mallet import-dir --input tweet_data/*
--output twitter.mallet
```

- 3. Try out classifier:
 bin\mallet train-classifier --input
 twitter.mallet --training-portion 0.9
- 4. Train classifier:
 bin\mallet train-classifier --input
 twitter.mallet --output-classifier my.classifier
- 5. Classify test data:
 bin\mallet classify-dir --input tweet_test
 --output results.txt --classifier my.classifier

Examine output

- 1. Open a new spreadsheet in Google Sheets
- 2. Change "spreadsheet settings" country to US
- 3. Open your file "results.txt" from MALLET folder
- 4. Copy paste from "results.txt" into spreadsheet
- 5. Insert title row, label columns
- 6. Delete useless columns
- 7. Make new column, "prediction" fill with formula:
 =IF([subtweet_prob] > [yolo_prob],
 "subtweet", "yolo")

Topic modeling

- ► Group words that co-occur most into *topics*
- ▶ Identify how "salient" topics are in documents
 - depends on how many topics you tell it to find
 - depends on how it weights the topics

Topic modelling hands-on

- 1. Unzip "blm_tweets" into MALLET folder
- 2. Prep data:
 - bin\mallet import-dir --input blm_tweets --output
 blm.mallet --keep-sequence --remove-stopwords
- 3. Sample topic model output:
 bin\mallet train-topics --input blm.mallet
- 4. Topic model with saved output:
 bin\mallet train-topics --input blm.mallet
 --num-topics 6 --output-topic-keys blm_keys.txt
 --output-doc-topics blm_composition.txt
 --optimize-interval 10

Examine output

- 1. Run topic models MALLET code
- 2. "Name" topic keys
- 3. Paste document composition into Google Sheets
- 4. Make new column, "main topic" fill with formula:
 =INDEX([topic col 1]\$1:[topic col 6]\$1, 1,
 MATCH(MAX([topic 1 doc 1]:[topic 6 doc 1]),
 [topic 1 doc 1]:[topic 6 doc 1], 0))
- 5. Drag duplicate to bottom of column
- 6. Make a table to the side using "COUNTIF" function